Standards Working Group Report

Wildfire Science & Technology Commons October 2025

Executive Summary

The Standards Working Group is focused on establishing a comprehensive framework for the community catalog towards seamless registration, discovery and integration of data, AI AI models, code, code, tools, and services within the Wildfire Commons. Additionally, focusing on reuse of community catalog offerings through reproducible workflows. Meeting monthly from February through October 2025, this working group brings together data scientists, researchers, and technology specialists to define and implement standardized metadata schemas, tagging conventions, and vocabularies for the Wildfire Commons community catalog listings. The group ensures standards reflect the diverse needs of the wildfire community while facilitating interoperability across the Wildfire Commons. Key deliverables included reviewing the Wildfire Commons metadata requirements for the community catalog, sharing knowledge around existing repository practices to ensure compatibility, and recommending maintainable standards and trackable metrics that evolve with emerging technologies to support the long-term sustainability of the Wildfire Commons.

Working Group Members:

- Danielle Christianson, Lawrence Berkeley National Laboratory
- Nicholas LaHaye, JPL/SIG
- Ilkay Altintas, UC San Diego
- Jake Rose, Improving Aviation | SkyTL
- Zack Wurtzebach, Spatial Informatics Group (SIG)

Working Group Analysis

What gaps or unmet needs does the Wildfire Commons fill?

The Wildfire Commons addresses several critical gaps identified through stakeholder interviews and community engagement:

- Centralized Discovery and Cataloging: The Commons serves as a unified meeting place for diverse wildfire repositories, solving the fragmentation problem where valuable data, models, and tools exist in isolation across different organizations. As an example, the Wildland Fire Science Initiative (WFSI) data portal supports Strategic Environmental Research and Development Program (SERDP) program data, but the broader community lacks a comprehensive catalog that spans all wildfire research domains.
- Model and Service Integration: Currently, the community operates in an ecosystem of interconnected models (fuel models, fire behavior models, climate models, weather models,

- drought models) that currently lack standardized interfaces and metadata descriptions. The Commons can provide the infrastructure needed to describe, discover, and integrate these diverse modeling resources.
- Standards Harmonization: The wildfire community currently operates with few standardized
 practices around research and reproducible workflows. Key standardization gaps include
 keyword vocabularies at the dataset level, point cloud data naming conventions, and metadata
 describing data acquisition processes. The Wildfire Commons provides a framework to establish
 and promote community-validated standards.
- Enhanced Reproducibility and Open Science: While funding agencies increasingly require open science practices, researchers often lack adequate tools and incentives for reproducible workflows. The Wildfire Commons can bridge this gap by providing containerized environments, standardized workflows, and validation mechanisms that make reproducible science more accessible and transparent.

What do other similar efforts to the Wildfire Commons do well that we could learn from?

Several exemplary communities provide valuable lessons for the Wildfire Commons implementation:

- Biomedical Community Standards: The biomedical community's mature approach to standards
 adoption, where comprehensive metadata requirements and community validation processes
 have become standard practice. The Protein Data Bank's requirement for data submission before
 publication demonstrates how mandatory standards can drive community adoption.
- AmeriFlux Community Model: This community effectively utilizes carrots to promote standards
 adoption. By adopting the global Fluxnet Processing standards, research teams receive
 network-standardized data quality review and publication, leading to increased visibility of
 high-quality data. Furthermore their data can be easily synthesized across the network, which
 increases their utilization. This incentive structure could be adapted for wildfire research.
- DataOne Standards Framework: The WFSI data portal's adoption of DataONE standards for dataset-level metadata as well as file-level metadata standards including data dictionaries modeled after the DOE ESS-DIVE Community provides an interoperable foundation for data discoverability and usability. These established frameworks can be extended rather than recreated.
- NASA's Central Metadata Repository (CMR): CMR's ontologies and standardized workflows as
 potentially valuable resources. The CMR's approach to federated systems and knowledge graph
 interconnection offers a model for enabling interoperability between wildfire research systems.

What partnerships or collaborations could the Wildfire Commons pursue to launch the Marketplace

Strategic partnerships should focus on both technical infrastructure and community adoption:

Technical Infrastructure Partnerships:

- NASA Earth Science Data Systems: leverage CMR ontologies and federated system approaches for knowledge graph development
- DataOne Consortium: build upon existing metadata standards and repository practices already adopted by community members
- Container Orchestration Platforms: partner with cloud providers to enable exploratory containerized workflows for data around reproducible science

Community and Standards Partnerships:

- Professional Associations: engage through AGU, Gateways conferences, and wildfire-specific conferences to gather ethnographic and user research data
- Funding Agency Collaboration: work with NSF, NASA, DOE, and SERDP to align Wildfire Commons standards with open science requirements and create enforcement mechanisms
- Journal Publishers: large impact goal could be to develop relationships with journals to establish "data paper" publication pathways and ensure Wildfire Commons listings meet scholarly publication standards

Research Community Partnerships:

- Academic Institutions in Wildfire Prone States: ideally with departments focused on wildfire research
- National Laboratories: expand the successful WFSI data portal model to serve as a reference implementation for Wildfire Commons standards
- Regional Fire Research Networks: partner with established researcher networks to pilot badge systems and community validation processes

What trends or changes could benefit the further development of the Wildfire Commons

Several converging trends create favorable conditions for the Wildfire Commons development and adoption:

- Open Science Mandates: Increasing requirements from federal funding agencies for open science practices create both pressure and opportunity. Researchers require platforms that facilitate compliance while enhancing their science, thereby positioning the Wildfire Commons as an essential tool rather than an additional burden.
- Al and Machine Learning Integration: The rapid adoption of AI/ML in wildfire research creates demand for standardized model metadata, containerized workflows, and reproducible science practices.
- Cloud Computing and Containerization: The maturation of cloud-based research environments and container technologies makes it feasible to provide standardized, reproducible workflows that researchers can easily adopt and adapt.
- Knowledge Graph Technologies: Advances in federated knowledge graphs and semantic web technologies enable the kind of interconnected, discoverable research ecosystem that the wildfire community needs.
- Community-Driven Validation: The success of crowdsourced validation in other scientific communities (like AI model benchmarking) suggests that the wildfire community is ready for collaborative standards development and badge/recognition systems.
- Cross-Disciplinary Research Growth: Wildfire research increasingly draws from diverse fields (remote sensing, climate science, ecology, computer science), creating demand for standardized vocabularies and interoperability that the Wildfire Commons can provide.

Priorities for Next Phase of Working Group

Priority #1: Finalize and Implement Comprehensive Metadata Schema for Models and Services

Complete the development and deployment of standardized metadata schemas for code, AI models and services that were extensively discussed in the June 2025 meeting. This includes reviewing AI metadata schemas such as Croissant while incorporating stakeholder feedback on the need for more detailed specifications beyond high-level model descriptions. The schema should address the diverse model ecosystem identified by the group, including fuel models, fire behavior models, climate models, weather models, and drought models.

Key implementation steps include establishing automated assignment processes for metadata validation, developing community nomination mechanisms for model quality assessment, and creating feedback systems that ensure continuous improvement. The working group will also explore automation practices that the community would like to implement to keep metadata listings current and accurate.

Proposed working group actions:

- 1. Working group to provide guidance on interview guide to understand how the community is searching and discovering data/models in the Wildfire Commons today and for registering data/models what is missing in the metadata
- 2. Working group recommends other community members not in the Wildfire Commons catalog today that should have their products listed
- 3. Working group to review outcomes from community interviews conducted by the Wildfire Commons team

Priority #2: Develop Wildfire-Specific Ontology and Controlled Vocabularies

Building upon the fire ontology through the National Wildfire Coordinating Group (NWCG) Glossary of Wildland Fire and incorporating insights from DataONE standards and NASA's CMR, develop comprehensive wildfire-specific controlled vocabularies and taxonomies. This priority addresses the critical gap identified regarding keyword standardization at the dataset level.

The approach will implement an Al-assisted vocabulary collection process that gathers information from the community and generates candidate vocabularies for community validation through review and voting. The system will include pre-, during-, and post-fire categorizations, spatial-temporal metadata standards, and integration with existing ontologies, such as ENVO. User-friendly interfaces with tooltips and type-ahead functionality will make these vocabularies accessible to researchers while maintaining scientific precision and accuracy.

The working group will also address point cloud data naming conventions and metadata describing data acquisition processes. In these areas, standardization can significantly improve data discovery and reuse across the wildfire research community.

Proposed working group actions:

- Working group work on reviewing existing ontologies and creating a combined dataset
- 2. Working group recommend knowledge graph based interconnections between the ontology
- 3. Working group to advise on an interview guide for community validation or ontologies in the NWCG Glossary of Wildland Fire and curating queries where the onology would be used to discover products in the Wildfire Commons

- 4. Working group to collaborate with the Wildfire Commons team on an AI search engine (chat based interface for discovery, train an LLM on existing acronyms and community database)
- 5. Working group to explore a recommendation system that guides users
 - a. Explore the registration process with this recommender what metadata fields could a recommender be connected to registration process (i.e., recommend keywords)
- 6. Working group and dev team to think about maintenance of terms and flagging by the community in the interface for missing terms/errors

Priority #3: Badge System Identification & Implementation for Marketplace

Define a comprehensive badge system that addresses the community's need for quality recognition and standards compliance. Based on stakeholder feedback, this system should include badges for reproducibility (containerized workflows), open science compliance (data availability and documentation), community validation (peer review and testing), and adherence to standards (metadata completeness and vocabulary compliance).

The implementation will define specific criteria for each badge category, establish automated assignment processes where feasible, and create community nomination mechanisms that capitalize on the collaborative nature of wildfire research. The user experience design will enable easy filtering and recognition of high-quality, high-compliance listings while encouraging community participation in the badge assignment process.

Proposed working group actions:

- 1. Working group to collaborate with Wildfire Commons development team to provide first pass of community badges and award expectations
- 2. Working group to review first version badges and improve the qualifications
- 3. Working group to recommend additional badges beyond the initial set
- 4. Working group to discuss and recommend future community involvement in recommending badges

Appendix

Create a template example of what standardization for remote sensing workflows might look like (Provided by working group member, Nick LaHaye):

- Project Metadata and Goal Specification
 - Include fields for project name, objectives, area of interest, target variables, research questions, and intended outcomes.
- Data Acquisition and Selection
 - o Platform type (Satellite, Aerial, UAV, Ground-based)
 - Sensor type (Optical, SAR, Lidar, Thermal, Multispectral, Hyperspectral)
 - Data level (Raw, L1A, L1B, Geo-corrected)
 - o Data source (e.g., NASA EOSDIS, Copernicus, commercial provider)
 - o Temporal range and spatial extent.
- Data Preprocessing Options
 - Calibration (radiometric, geometric/ L1,L2, etc.)
 - o Atmospheric correction protocols
 - Cloud and noise masking
 - Spatial subsetting, re-projection
 - Data normalization and quality checks.
- Data Storage and Management
 - File formats (GeoTIFF, HDF5, NetCDF, etc.)
 - Provenance tracking
 - Metadata standards compliance (ISO 19115, OGC SensorML).
- Processing and Feature Extraction
 - Algorithms (classification, regression, segmentation, change detection)
 - Input parameter definition (model hyperparameters, threshold settings)
 - Ancillary data integration (DEM, weather, ground truth).
- Analysis and Modeling
 - Statistical methods
 - Inter-model connections
 - Multiple model options, validation strategies
 - Uncertainty quantification.
- Visualization and Output Generation
 - Maps, charts, and report formats
 - Visualization tool selection (GIS platforms, Python/R Notebooks, GEE)
 - Custom output file settings.
- Export, Sharing, and Archiving
 - Data export options (formats and destinations)
 - Workflow versioning
 - o Repository/Archive registration options (e.g., Zenodo, PANGAEA).

Send links about CMR (Central Metadata Repository) and systems that use it:

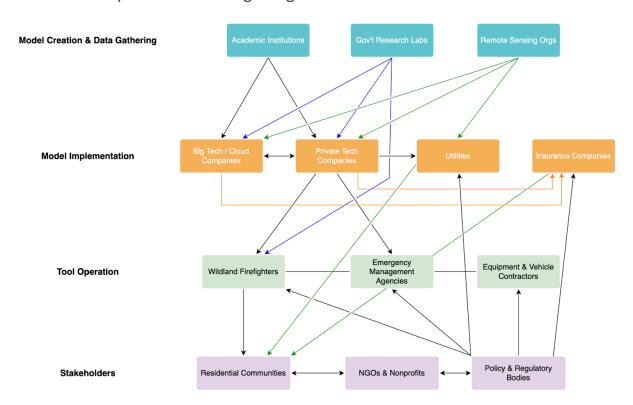
https://www.earthdata.nasa.gov/engage/open-data-services-software/earthdata-developer-portal/cmrapi

Provide further information on standardization of validation and stratification

Stratification

- Defining Strata
 - Stratify datasets by land cover class, ecological zone, spectral signature, or administrative boundaries relevant to the study area.
 - Options include pre-stratification (before classification) or post-stratification (after classification or mapping).
 - Sample Allocation and Design
 - i.e. Employ stratified random sampling, proportional allocation, or double-sampling, with standardized protocols for reproducibility.
 - Document the sample design (number of samples per stratum, methods, randomization protocol).
- Stratification Accuracy Reporting
 - Report user's accuracy, producer's accuracy, and overall accuracy for each stratum using an error (confusion) matrix.

Validation


- Validation Data Collection
 - Use independent data (field surveys, high-resolution imagery, reference datasets), ensuring representative coverage and appropriate spatial resolution.
- Document site selection, sampling protocols, homogeneity criteria, and up-scaling strategies for coarse products.
- Validation Metrics and Reporting
 - Employ a confusion matrix (error matrix) for classification products, reporting things like:
 - Producer's Accuracy
 - User's Accuracy
- Validation Procedures
 - Specify the stage of validation (CEOS stages 1-4), referencing the Committee on Earth Observation Satellites standard.
 - Compare products with reference datasets or inter-product comparisons, document uncertainties, and traceability to SI standards for reference data where possible.

Share initial thoughts on ML/DL metadata improvements

- Making Metadata More Cohesive and Useful: Right now, metadata frameworks used for machine learning are somewhat fragmented and don't always talk to each other well, making research harder than it should be (FAIR, Schema.org, DCAT, Model Cards). Building common standards, or even lightweight tools that can bridge existing gaps, would help streamline collaboration and sharing.
- More Automation: A lot of metadata creation and management still relies on manual entry and upkeep, which can become tedious or error prone. Smarter tools using natural language processing and code tracing can automatically capture key information, like how and when a model was trained, what data it used, and which versions were deployed.
- Metadata on Ethics and Fairness: Most current metadata frameworks don't go far enough to make ethical safeguards and fairness visible and actionable. By adding clear fields that report

- fairness scores, climate footprint of models + training, intended use, and audit trails, metadata can better inform users about whether a model is suitable, responsible, or free from bias.
- Enriching Data with Human Context: Going beyond technical specs to include source details (who created this dataset?), timing (when was it made?), and connections to other work (who cited or reused it?). With better context, researchers and users make more informed decisions and maximize model value over time.
- Versioning and model updates: Machine learning models and datasets change quickly and often.
 If metadata tools can automatically track these updates, record lineage, and roll back or compare
 versions, teams can keep up with today's rapid pace while maintaining reliability and
 reproducibility.

Market Landscape Understanding: Diagram

Market Landscape Understanding: Acronyms

Acronym	Definition	Notes
3DEP	3D Elevation Program	Provides high-quality topographic data (LiDAR), used for fire modeling and fuel assessments.

ABI	Advanced Baseline Imager	GOES-R instrument; visible/IR imagery for fire detection, smoke tracking.		
ARD	Analysis Ready Data	Preprocessed satellite data ready for scientific analysis (e.g., Landsat ARD).		
ASM	Aerial Supervision Module	Aircraft that supervises retardant drops and air operations.		
ASOS	Automated Surface Observation System	Automated weather stations, sometimes used for fire weather inputs.		
ATGS	Air Tactical Group Supervisor	Manages tactical aircraft during incidents.		
AVL	Automatic Vehicle Location	Tracks firefighting resources in real time.		
BI	Burning Index	NFDRS index, relates to flame length.		
BIA	Bureau of Indian Affairs	Federal land agency, with fire management programs.		
BPS	Biophysical Settings	Vegetation types used in LANDFIRE modeling.		
CAL FIRE	California Department of Forestry and Fire Protection	State-level fire agency.		
CBD	Canopy Bulk Density	Fuel parameter for crown fire modeling.		
СВН	Canopy Base Height	Fuel parameter for crown fire initiation.		
СС	Canopy Cover	Key LANDFIRE fuel characteristic.		
CFFDRS	Canadian Forest Fire Danger Rating System	Canadian counterpart to NFDRS.		
CFIS	Crown Fire Initiation and Spread System	Software to simulate crown fire behavior.		
СН	Canopy Height	Fuel characteristic used in fire models.		
CONUS	Contiguous United States	Term used in datasets like LANDFIRE.		
CRWB	Crew Boss	Supervises a hand crew.		
CRS	Coordinate Reference System	Used for spatial fire/fuel datasets.		
CWPC	Catastrophic Wildfire Prevention Consortium	Research/coordination effort.		

DBH	Diameter at Breast Height	Used in fire behavior/spotting calculations.
DEM	Digital Elevation Model	Foundational data for fire spread modeling.
DIVS	Division/Group Supervisor	Oversees resources in a division/group.
DOI	Department of the Interior	Oversees BLM, NPS, FWS — all fire management agencies.
DROTAM	Drone Notice to Airmen	NOTAM specific to wildfire incident UAS.
DZ	Dozer	Bulldozer used for fireline construction.
EGP	Enterprise Geospatial Portal	Wildfire incident geospatial data sharing.
ELCFIRE	Eulerian Level set Model of FIRE spread	Research wildfire spread model.
ENGB	Engine Boss	Supervises wildland fire engine crew.
ERC	Energy Release Component	NFDRS index for seasonal fire potential.
ESM	Ember Spread Model	Simulates ember transport/spotting.
EVC	Existing Vegetation Cover	LANDFIRE input.
EVH	Existing Vegetation Height	LANDFIRE input.
EVT	Existing Vegetation Type	LANDFIRE input.
FALA	Faller A	Advanced sawyer qualification.
FALB	Faller B	Intermediate sawyer qualification.
FALC	Faller C	Chainsaw operator, basic qualification.
FAR	False Alarm Ratio	Used in fire detection (e.g., satellite hot spots).
FARSITE	Fire Area Simulator	Widely used deterministic fire growth model.
FASMEE	Fire and Smoke Model Evaluation Experiment	Large-scale experiment to validate fire/smoke models.
FBFM	Fire Behavior Fuel Models	Standard set of fuel models (Anderson, Scott & Burgan).

FBFRG	Fire Behavior Field Reference Guide	NWCG reference guide.		
FDist	Fuel Disturbance	LANDFIRE disturbance input layer.		
FEAT	Fire Ecology Assessment Tool	Ecosystem monitoring software.		
FEMO	Fire Effects Monitor	Tracks ecological effects of fire during incidents.		
FFI	FEAT/FIREMON Integrated	Fire ecology monitoring software.		
FFMC	Fine Fuel Moisture Code	Component of Canadian FWI system.		
FFS	Fire, Fuel, and Smoke Science Program	USFS RMRS program (Missoula Fire Lab).		
FFT2	Firefighter Type 2	Entry-level firefighter qualification.		
FHAES	Fire History Analysis and Exploration System	Fire history analysis tool.		
FIA	Forest Inventory and Analysis	USFS inventory program; fuels baseline data.		
FIREMON	Fire Effects Monitoring and Inventory System	Field-based fire ecology monitoring.		
FIRESEV	Fire Severity Mapping System	Fire effects mapping project.		
FIRIS	Fire Integrated Real-time Intelligence System	California-based real-time fire mapping/modeling.		
FIRMS	Fire Information for Resource Management System	NASA fire detection portal (MODIS/VIIRS).		
FMAC	Fire Modeling and Analysis Committee	Alaska analyst network.		
FMI	Fire Modeling Institute	USFS center for fire modeling expertise.		
FMSF	Fire Modeling Services Framework	Analytical fire modeling system.		
FOFEM	First Order Fire Effects Model	Predicts mortality, emissions, nutrient loss.		
FPA	Fire Program Analysis	Fire planning system (risk, resources).		
FRAMES	Fire Research And Management Exchange System	Fire science knowledge hub.		
FRG	Fire Regime Group	Classification of fire return intervals and severities.		

FRIA	FAA-Recognized Identification Areas	Drone operations near fire incidents.		
FSC	Finance Section Chief	Manages incident costs/contracts.		
FVC	Fuel Vegetation Cover	Input for fire models.		
FVH	Fuel Vegetation Height	Input for fire models.		
FVT	Fuel Vegetation Type	Input for fire models.		
FWI	Fire Weather Index	Canadian fire danger rating metric.		
FWS	Fish and Wildlife Service	DOI agency with fire responsibilities.		
GACC	Geographic Area Coordination Center	Regional fire resource coordination hub.		
GEDI	Global Ecosystem Dynamics Investigation	LiDAR-derived canopy structure (used for fuels).		
GFS	Global Forecast System	NOAA forecast model, used for fire weather.		
GIS	Geographic Information Systems	Critical for fire management mapping.		
GMAC	Geographic Area Multi-Agency Coordinating Group	Regional coordination authority.		
GOES	Geostationary Operational Environmental Satellite	Key fire detection satellites.		
GSAN	Geospatial Analyst	Wildfire intel/IMT role.		
Haines Index (HI)	Haines Index	Fire weather instability index.		
HDist	Historical Disturbance	LANDFIRE input.		
HEQB	Heavy Equipment Boss	Supervises dozers, tractor plows.		
HIFLD	Homeland Infrastructure Foundation-Level Data	National geospatial data, including fire-relevant infrastructure.		
HLS	Harmonized Landsat Sentinel-2	Remote sensing dataset useful for fuels/fire.		
HROS	Head Rate of Spread	ROS at fire head.		
HPWREN	High Performance Wireless Research and Education Network	Provides wildfire camera feeds (esp. California).		

HRRR	High-Resolution Rapid Refresh	NOAA fire-weather forecast model.		
IA	Initial Attack	First response to new wildfire.		
IAFC	International Association of Fire Chiefs	Fire service professional group.		
IHC	Interagency Hotshot Crew	Elite 20-person hand crew.		
ICT1	Incident Commander Type 1	Manages highest complexity incidents.		
ICT2	Incident Commander Type 2	Manages large/complex fires under IMT2.		
ICT3	Incident Commander Type 3	Manages extended attack/complex IA fires.		
ICT4	Incident Commander Type 4	Manages small fires or initial attack.		
ICT5	Incident Commander Type 5	Entry-level IC for very small fires.		
ICTP	Incident Commander Trainee	Training status for IC roles.		
IFTDSS	Interagency Fuel Treatment Decision Support System	DOI fire planning tool.		
IMET	Incident Meteorologist	Specially trained NWS fire-weather forecaster.		
IMT	Incident Management Team	Interagency incident management structure.		
IRPG	Incident Response Pocket Guide	Standard wildfire field reference.		
IRWIN	Integrated Reporting of Wildland Fire Information	Federal interagency wildfire reporting system.		
JFSP	Joint Fire Science Program	DOI/USFS-funded fire research program.		
JPSS	Joint Polar Satellite System	Polar satellites (VIIRS fire detection).		
KBDI	Keetch–Byram Drought Index	Soil/duff dryness and drought measure.		
KML	Keyhole Markup Language	Geospatial format used in fire mapping.		
LAL	Lightning Activity Level	Fire weather lightning scale.		
LANCE	Land, Atmosphere Near real-time Capability for Earth Observations	NASA NRT data system, includes FIRMS.		
LANDFIRE	Landscape Fire and Resource Management Planning Tools	Fuels/vegetation/fire datasets.		

LAT	Large Air Tanker	Multi-engine retardant aircraft.		
LCES	Lookout, Communication, Escape route, Safety zone	Safety system used by wildland firefighters.		
LCP	Landscape file	Fuel/terrain input file for fire models.		
LCG	Landscape GeoTIFF	Georeferenced LCP.		
LFPS	LANDFIRE Product Service	LANDFIRE data distribution portal.		
LFTFC	LANDFIRE Total Fuel Change Tool	LANDFIRE fuel update tool.		
LiDAR	Light Detection and Ranging	Used for canopy/fuels measurement.		
LSC	Logistics Section Chief	Manages incident logistics/supply.		
LTAN	Long-Term Analyst	Provides long-range fire behavior forecasts.		
MAFFS	Modular Airborne Firefighting System	C-130 aircraft with internal retardant tanks.		
MACS	Multi-Agency Coordinating System	Framework for interagency fire coordination.		
MFRI	Mean Fire Return Interval	Time between fires in a given ecosystem.		
MOD	Wildland Fire Module	Self-sufficient crew for fire/monitoring.		
MoD-FIS	Modeling Dynamic Fuels with an Index System	NDVI/WELD-based seasonal fuels modeling.		
MODIS	Moderate Resolution Imaging Spectroradiometer	NASA fire detection sensor.		
MSD	Maximum Spotting Distance	Longest distance an ember travels.		
MTT	Minimum Travel Time	Fire growth algorithm (FlamMap/FARSITE).		
NAM	North American Mesoscale Model	NOAA model used in fire weather.		
NAIP	National Agriculture Imagery Program	High-res aerial imagery (fuels mapping).		
NAFRI	National Advanced Fire & Resource Institute	Training center, Tucson AZ.		
NASS	National Agricultural Statistics Survey	Crop/landcover datasets useful for fuels.		
NBM	National Blend of Models	NOAA blended forecast guidance, incl. fire weather.		

NCEP	National Centers for Environmental Prediction	Hosts GFS, NAM, HRRR — key for fire weather.		
NDVI	Normalized Difference Vegetation Index	Vegetation greenness, fire fuels proxy.		
NEPA	National Environmental Policy Act	Governs fire/fuel treatment planning.		
NERIS	National Emergency Response Information System	Fire incident data system.		
NFDRS	National Fire Danger Rating System	US fire danger rating system.		
NFDSC	National Fire Decision Support Center	Fire science application hub.		
NIFC	National Interagency Fire Center	Federal wildfire coordination hub.		
NIMO	National Incident Management Organization	Specialized Type 1 IMTs for complex incidents.		
NIROPS	National Infrared Operations	Nighttime fire mapping flights.		
NMAC	National Multi-Agency Coordinating Group	Top-level national coordination for resources.		
NLCD	National Land Cover Database	Land cover data used in fire modeling.		
NOAA	National Oceanic and Atmospheric Administration	Weather/fire weather agency.		
NOTAM	Notice to Airmen	Fire TFRs issued as NOTAMs.		
NRCS	Natural Resources Conservation Service	Fuels/land management partner.		
NRT	Near Real-Time	Satellite data delivery class (used in FIRMS).		
NTFB	Near Term Fire Behavior	Fire growth modeling tool.		
NWCG	National Wildfire Coordinating Group	Sets wildfire standards/training.		
NWP	Numerical Weather Prediction	Underpins fire weather modeling.		
NWS	National Weather Service	Provides fire weather forecasting.		
OLI	Operational Land Imager	Landsat sensor used for vegetation/fuels.		
OPS	Operations Section Chief	Leads operations section on IMTs.		
PB-B	Prescribed Fire Burn Boss	Qualified prescribed fire manager (Types 1–3).		

PIO	Public Information Officer	Manages external communications.		
PLI	Position Location Information	Used in resource tracking on incidents.		
POD	Probability of Detection	Fire detection performance metric.		
POI	Probability of Ignition	Schroeder's ignition probability model.		
ProWESS	Proactive Wildfire & Environmental Sustainability Solutions	Fire risk initiative.		
PSC	Planning Section Chief	Oversees incident planning/intel.		
PSPS	Public Safety Power Shutoff	Utility fire prevention practice.		
RAP	Rappeller	Firefighter deployed by rope from helicopter.		
RAWS	Remote Automatic Weather Station	Backbone of fire weather data.		
RESL	Resource Unit Leader	Tracks resources/personnel on incidents.		
RFM	Reference Fuel Moisture	Standardized fuel moisture input.		
RID	Remote ID	Drone ID requirement on fire incidents.		
RMRS	Rocky Mountain Research Station	USFS research branch; home to Missoula Fire Lab.		
ROS	Rate of Spread	Fire spread speed metric.		
RT	Real-Time	Satellite data latency class.		
SAB	Strategic Analytics Branch	Fire data/analysis branch (DOI).		
SC	Spread Component	NFDRS index for fire spread potential.		
SEAT	Single Engine Air Tanker	Small, fast fixed-wing retardant aircraft.		
SMKJ	Smokejumper	Firefighter parachuted into remote fires.		
SOFR	Safety Officer (Fire)	IMT position for firefighter safety.		
SP	Standard Processing	Satellite data latency class.		
SRW	Short-Range Weather	Forecast model (UFS/EPIC).		

STCR	Strike Team Leader (Crew)	Leads a group of crews.		
JTCK	Strike realification (crew)	Leads a group of crews.		
STEN	Strike Team Leader (Engine)	Leads a group of engines.		
STPL	Strike Team Leader (Plow/Dozer)	Leads heavy equipment strike teams.		
STFB	Short Term Fire Behavior	Fire growth modeling tool.		
SUADS	Small Unmanned Aircraft Detection Systems	Detects drones over fire airspace.		
SWA	Southwest Area	One of 10 GACC regions.		
TCDC	Total Cloud Cover	Weather parameter used in fire models.		
TFLD	Task Force Leader	Leads mixed resource task forces.		
TFR	Temporary Flight Restriction	Airspace restriction over incidents.		
TIFF	Tagged Image File Format	Remote sensing imagery format.		
TIRS	Thermal Infrared Sensor	Landsat sensor for fire/heat detection.		
том	Treatment Optimization Model	Fire/fuel treatment planning tool.		
UAS	Unmanned Aerial System	Fire drones.		
UFS	Unified Forecast System	NOAA modeling system; includes fire weather.		
URT	Ultra Real-Time	Satellite data latency class.		
USFS	U.S. Forest Service	Major wildland fire agency.		
USFS FAM-IM TnT	Fire and Aviation Mgmt – Info Mgmt Tools & Tech	Fire tech/tools program.		
USS	UAS Service Supplier	FAA-authorized UAS data provider.		
UTM	Universal Transverse Mercator	Common projection for fire data.		
vcc	Vegetation Condition Class	LANDFIRE departure-from-natural-conditions metric.		
VIIRS	Visible Infrared Imaging Radiometer Suite	High-res fire detection sensor (NPP/NOAA-20/21).		

VIPR	Virtual Incident Procurement	USFS fire contracting platform.		
VLAT	Very Large Air Tanker	High-capacity retardant aircraft (e.g., DC-10).		
WCS	Wildfire Crisis Strategy	USFS fuels initiative.		
WFAS	Wildland Fire Assessment System	National fire danger maps.		
WFAIP	Wildland Fire Application Information Portal	Fire application hub.		
WFDSS	Wildland Fire Decision Support System	Fire decision support tool.		
WFIPS	Wildland Fire Investment Planning System	Risk-based fire planning tool.		
WFIT	Wildland Fire Information & Technology	Wildfire IT/program unit.		
WFM RD\&A	Wildland Fire Management Research, Development & Application	Interagency science-application program.		
WFPI	Wildland Fire Potential Index	Fuels/fire potential index.		
WFSI	Wildland Fire Science Initiative	DOI science initiative.		
WFSP	WFPI-based Fire Spread Probability	WFPI-based probability metric.		
WFSTAR	Wildland Fire Safety Training Annual Refresher	Annual safety training (RT-130).		
WHP	Wildfire Hazard Potential	National wildfire hazard raster.		
WIMS	Weather Information Management System	Central fire weather data system.		
WLFP	WFPI-based Large Fire Probability	WFPI-based probability metric.		
WoFS	Warn-on-Forecast System	Short-term severe weather/fire weather model.		
WRF	Weather Research and Forecasting Model	NWP model used in fire weather.		
WSTC	Wildfire Science & Technology Commons	Fire knowledge-sharing hub.		
WT	Water Tender	Vehicle transporting large volumes of water.		
WUI	Wildland-Urban Interface	Fire/human development boundary.		

Market Landscape Understanding: Models

Market overview of wildland fire models provided by working group member, Jake Rose.

Fire Modeling Tool	Organization	Purpose and Description	Features	Resources	Software Platform and Accessibility	Notes
Learning NN High-Res	Missoula Fire Sciences Laboratory (MFSL)	A deep learning (DL) approach was employed to represent the behavior of a high-resolution physics-based wildland fire spread model.	* Fully connected Feed-Forwar d Neural Network.	* Interactive webpage for model, but it doesn't work yet, last I checked. * Related paper: LIHTFire: A high-resolutio n 1D physics-based wildfire spread model		
BEHAVE	* MFSL	The BEHAVE fire behavior prediction and fuel modeling system was a system of interactive computer programs for modelling fuel and fire behavior. It was developed in 1976 and released for in-the-field use in 1984. BEHAVE has been updated and expanded and expanded and expanded the BehavePlus fire modeling system to reflect its expanded scope.	* Designed for the practioner and available in both batch and interactive mode.	* Pat's paper on BehavePlus: Past, Present, and Future	* Consisted of 5 FORTRAN programs.	* The concept for BEHAVE came from Dick Rothermel after the 1976 S-590 'Fire Behavior Officer' course. He thought that a comoputer program could automate the nomograms (Albini 1976b) and tables taught in the course. * BEHAVE could do interactive runs in 1976 but only at night when the MFSL had access to the Lawrence Berkeley Lab computer in CA. * The first presentation of BEHAVE was given at the MFSL in September 1977. * In Aug 1984, BEHAVE was formally transferred.

			* Includes a	* Pat's paper		from the fire behavior research work unit to the Forest Service Washington Office as a nationally supported system and tested in the field for the first time. * Required a 3-day BEHAVE course, taught by Andrews, Burgan, and Rothermel. * It is only available
			robust GUI into which	on BehavePlus:		via a GUI (instead of a CLI executable).
			user adds	Past, Present,		* Each calculation
		BehavePlus is a fire	inputs,	and Future		assumes that
		modeling system that	usually as	* Download		conditions are
		can be used for any	ranges of	<u>BehavePlus</u>		uniform and
	Funded by:	fire management	values.	6.0.0 (Build		constant for the
	* USDA:	application that needs	* Condition	<u>626).</u>		projection period.
	- US Forest	to calculate fire	variation is	* BehavePlus		* Behave v7 is
	Service Fire and	behavior, fire effects,	constant in	6.0 Tech Tips		coming out in
	Aviation	and the fire	time and	(28 pages)		spring of 2025:
	Management	environment. Its	uniform in	* BehavePlus		more intutive, new
	- US Forest	models simulate:	space.	Design and		UI, updated
	Service Rocky	* surface fire rate of	* User	Features (120		containment
old "BEHAVE"		spread	specifies a	pages)	* Windows	equations, shares
	Research Station	* crown fire rate of	time	* Models used	only.	code with
BehavePlus,		spread	duration	in BehavePlus.	* Personal	FlamMap.
	* Systems for	* intensity	over which	* Behave FAQ.	Computer	* The official
	Environmental	* probability of ignition	to run the model.	* Known bugs. * For help		version of BehavePlus is v6.0.0
	Management * Fire and	* fire size		with Behave:		(Build 626).
"Behave")		* spotting distance		- Phone: (866)		* There are special
<u> </u>	Management	(the only software in	spatial	224-7677 or		download
	(FAM)	2010 to calculate max	system, like	(616)		instructions for
	* Joint Fire	spotting distance)	FlamMap	323-1667		USFS employees.
	Science Program	* scorch height	and FARSITE)	- Fax: (616)		They should install
	(JFSP)	* tree mortality	that	323-1665		the Fire
	,	* fuel moisture	calculates	- E-mail:		Characteristics
		* wind adjustment	fire behavior	iia-helpdesk@		Chart from the
		factor.	for an area	usda.gov		Software Center.
			(or point)	- Website:		* The software is so
			with	https://iiahelp		sophisticated that 3
			homogeneo	desk.nwcg.gov		online training
			us fuels.	* Online		courses are

Each	training for	available. In order
calculation	Surface Fire	to take them, you
is separate	2021.	must make an
and	* Online	account for the
independent		Wildland Fire
for each cell	Prescribed	Learning Portal. This
of a table or	Fire 2021.	can take up to 2
point on a	* Online	days to approve.
graph.	training for	- BehavePlus is
* Takes user	Crown Fire	complicatied: used
inputs and	2021.	by GIS Specialists,
produces		FBANs.
Ι.	Papers:	* Has been formally
many tables and graphs	* Do you BEHAVE? —	integrated into FB
		and Rx fire courses
to predict different	Application of	in the NWCG fire
scenarios.	the BehavePlus	curriculum.
For example,	fire modeling	* BehavePlus
it shows the		
potential for	* BehavePlus,	functionality is incorporated into
a surface fire		WFDSS.
to transition	Variables (124	* Unlike
	pages) * DebayeDlus	
to crown fire for various	* BehavePlus	nomograms, the
	<u>v4.0, User's</u> Guide (123	spotting capability accounts for terrain
wind speeds. * A 'model'	l	and number of
is a	<u>pages)</u> * Modeling	
mathematic		torching trees. Also the number of
al	Spot Fires—U.S.	
relationship	Modeling	torching trees is used to calculate
describing a	<u>System</u>	firebrand lofting
specific	Comparisons	•
		height. "Higher firebrands travel
fire. It is also	<u>for</u> <u>Practitioners</u>	further".
	(October 2010	- In mountainous
a "representat	-	terriain, ridge top
ion of	<u>— Орреннані</u>	winds are used if
reality".		wind is blowing
*		across valleys.
BehavePlus		- The shape of the
has 9		valley is taken into
modules,		account with
each of		parameters like the
which has a		ridge-to-valley
specific fire		horizontal distance
modeling		and elevation
capability		difference.
(e.g.,		* In this study,
SURFACE,		BehavePlus was
SPOT). There		used to assess the
SFOT). THERE		useu to assess tile

are 35 models that comprise the 9 modules, described in 42 publications. - SURFACE: surface fire rate of spread, fireline intensity and flame length, reaction intensity and heat per area, intermediate values (heat source, heat sink, characteristi c dead fuel moisture, relative packing ratio, etc.), Standard, custom, and special case fuel models, wind adjustment factor. - CROWN: Transition from surface to crown fire, crown fire rate of spread, crown fire area and perimeter, fire type (surface, torching, conditional

spotting potential of the Chakina Fire, AK (2009). - They wanted to see what conditions were required for the fire to jump the 200-400 meter wide Chitina River. First they visually identified where spotting seemed most likely to occur. Then used BehavePlus to determine the wind speed required to produce such spotting at those locations. - Interesting: The author claims that, "there is no 'probability of ignition' considered in any of the geospatial models you can only get it from BehavePlus or fireline handbook." - Author also says that BehavePlus underestimates wind speeds required to produce spotting vs. geospatial models.

crown, crowning) - SAFETY: Safety zone size based on flame length, Area, perimeter separation distance SIZE: Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting from active			
- SAFETY: Safety zone size based on flame length, Area, perimeter separation distance SIZE: Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983), Albini 1983b; Chase 1984). Expected to add spotting		crown,	
Safety zone size based on flame length, Area, perimeter separation distance SIZE: Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983b; Chase 1984), Expected to add spotting			
size based on flame length, Area, perimeter separation distance SIZE: Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max sporting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983), or wind-driven surface fire (Albini 1983); Chase 1984). Expected to add spotting			
on flame length, Area, perimeter separation distance SIZE: Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1983), or wind-driven surface fire (Albini 1983), or wind-driven surface fire (Albini 1983), Chase 1984). Expected to add spotting			
length, Area, perimeter separation distance SIZE: Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983), or wind-driven surface fire (Albini 1983); Chase 1984). Expected to add spotting			
perimeter separation distance SIZE: Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983a; Albini 1983b; Chase 1984), Expected to add spotting			
separation distance SIZE: Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984), Expected to add spotting			
distance SIZE: Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984), Expected to add spotting			
- SIZE: Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
Elliptically shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
shaped point source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
source fire, Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
Area, perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
perimeter, shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
shape - CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
- CONTAIN: Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
Fire containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983; Albini 1983b; Chase 1984). Expected to add spotting			
containment success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
success, final area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
area and perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
perimeter, fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
fire size at initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
initial attack SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
- SPOT: Max spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
spotting distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
distance from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
from torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
torching trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
trees (Albini and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
and Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
Baughman 1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
1979; Chase 1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
1981), burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
burning piles (Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
(Albini 1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
1981), or wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
wind-driven surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
surface fire (Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
(Albini 1983a; Albini 1983b; Chase 1984). Expected to add spotting			
1983a; Albini 1983b; Chase 1984). Expected to add spotting			
1983b; Chase 1984). Expected to add spotting			
Chase 1984). Expected to add spotting			
Expected to add spotting			
add spotting			
In our active			
crown fire in			
BehavePlus			
v6.0 (Albini			
7505 (7 485111)			

et al. 2012).
- SCORCH:
Crown
scorch
height from
surface fire
flame
length.
-
MORTALITY:
Probability
of mortality
from bark
thickness
and crown
scorch.
- IGNITE:
Probability
of ignition
by
firebrands
(Schroeder
1969) or by
lightning
strikes
(Latham and
Schlieter
1989).
* Spotting
model in
which you
add a
probability
of ignition.
Includes the
same
process
provided by
the NWCG
nomograms
but also
includes
number of
torching
trees,
Ridge/Valley
elevation
difference
and
horizontal

			distance, and spotting source location. * Unique features to Behave: the containment equations and 4 different models to calculate max spotting distance.		* They capture
BurnPro3D \	WIFIRE	A Rx burn planning and management tool used by land managers and burn bosses. It simulates Rx burn fire behavior based on forecast weather data and user-defined ignition patterns. Helps determine the risk of a "slop-over". It is powered by the next generation WIFIRE Data and Model Commons.	* In Beta Testing. Log In window is protected behind UN/PW screen. * Cool, interactive 3D fuel map. * They have a UI (WIFIRE Edge Firemap) that shows map view of fire simulation: 3-hour advance predicted fire expansion. * Uses QUIC-Fire as the behind-the-s cenes model.	* Feature Article: Edge Computing at the Wildfire's Edge * WIFIRE Lab * WIFIRE Lab Forms New Partnership with U.S. DHS	hyper-localized data in and around a fire, couple it with other data, and do all processing at the edge. They call this platform WIFIRE Edge. It seems like they are only doing it for Rx burns for now. * They have conducted "prescribed burn scenarios". The Kern County Fire Department would use the WIFIRE Edge platform for a planned brush fire. * Some sensors are worn by responders. Others (Gateway sensors) are mounted on a tripod or magnetically attached to a fire truck. * Another in-situ sensor they have is the COMMs Station. It's the largest they have and offers the

			best environmental
			sensing.
			* Sounds like some
			Burn Bosses are
			already using
			BurnPro3D.
			* Their team +
			advisory board
			comprises <u>59</u>
			people.
			* They deploy their
			own sensors on
			responders and fire
			trucks, collect local
			data, process data
			on LOCAL network.
			* They gather
			high-res info on the
			fire front, weather,
			and location.
			* Sensor units
			developed by Red
			Line Safety, Inc.
			* The San Diego
			Supercomputer Lab
			does the data
			processing.
			* The team is
			located in UC San
			Diego's WIFIRE Lab.
			* They've
			demonstrated in
			Kern County, CA.
	Consolidated Fire And		
	Smoke Transport		
	(CFAST):		
	A two-zone fire model		
	capable of predicting		
	the environment in a		
	multi-compartment		
	structure subjected to		
CFAST	a fire. It calculates the	* GitHub.	
	time-evolving		
	distribution of smoke		
	and gaseous		
	combustion products		
	as well as the		
	temperature		
	throughout a building		
	during a		

		user-prescribed fire.			
		Crown Fire Initiation and Spread (CFIS) system: CFIS is a software tool			
		incorporating several recently developed models designed to simulate crown fire behavior. The main			
		outputs of CFIS are:			
		* the likelihood of crown fire initiation or			
		occurrence; * the type of crown			
		fire (active vs. passive)			
		and its rate of spread;			
		and			
		* the minimum			
		spotting distance	* Windows	* Download	
<u>CFIS</u>	FRAMES	required to increase a fire's overall forward	only.	the exe file	
		rate of spread.	Omy.	<u>here.</u>	
		·			
		The primary models			
		incorporated into CFIS			
		have been evaluated			
		against experimental and wildfire			
		observations. CFIS has			
		applicability as a			
		decision support aid			
		in a wide variety of			
		fire management			
		activities ranging from near-real time			
		prediction of fire			
		behavior to analyzing			
		the impacts of fuel			
		treatments on			
		potential crown fire			
		behavior.			

ELMFIRE	The Eulerian Level set Model of FIRE (ELMFIRE) spread is an open-source wildland fire spread model that can be used to: * Forecast the spread of fires in real time. * Reconstruct the spread of historical fires. * Quantify landscape-scale fire behavior potential. * Estimate annual burn probability and fire severity.	* "Note that the current spotting model is different from the spotting model described in the original ELMFIRE paper." * "Spotting distance is modeled as a lognormal distribution with the mean and stdev determined semi-empiric ally as a function of ambient wind speed and fireline intensity." * When ENABLE_SPO TTING = .TRUE., only pixels that burn as passive or active crown fire trigger the spotting algorithm. * User sets the POI ("PIGN") that an ember will ignite its destination pixel. * Interestingly, whereas	* Paper: Wildland fire modeling with an Eulerian level set method and automated calibration * GitHub		* Gives users exceptional control of spotting parameters.
---------	--	---	--	--	---

FARSITE	Joint Fire Science Program RMRS Fire, Fuel, and Smoke Science Program USDI National Park Service USFS USFS Rocky Mountain Research Station USFS WFM RD&A Pacific Southwest Region	FARSITE4 is no longer supported or available for download. FlamMap6 now includes FARSITE. (As of June 3, 2021). A fire area simulator that models fire growth under varying	1. population (POPULATIO N_DENSITY) 2. real estate/struct ures (REAL_ESTAT E) 3. land/timber (LAND_VALU E) * Spatial fire behavior system. Determines the fire behavior at each point (pixel) depending on the fire spreading from adjoining pixels and the	* Modeling Spot Fires—U.S. Modeling System Comparisons for Practitioners (October 2010	* Personal Computer	
			models will only simulate embers from torching trees, ELMFIRE can generate embers from surface fire. RISK: * Quantifies impacts to three assets: 1.			

Manag (SEM)	FDS is a large-eddy	day, and across the landscape. * User specifies hours/days of (true) active burning and then, separately, number of days for simulation. * Predicts a fire perimeter location. * Windows		
NIST FDS Fire Sa Resear	simulation (LES) code for low-speed flows, with an emphasis on smoke and heat transport from fires. These are typically small structural fires — not wildfires. In other words, it is a computational fluid dynamics (CFD) model of fire-driven fluid flow. The software solves numerically a	only. * Requires * FDS is a program that reads input parameters from a text file, computes a numerical solution to the governing equations, and writes user-specifie d output data to files. Smokeview is a companion program that reads FDS output files and	* GitHub. * Manuals: User's Guide (524 pages), Technical Reference Guide (233 pages), etc. * Download FDS * Tutorial * Download FDS: Windows, macOS, Linux	* Built mostly in Fortran. * As of Feb 2025, the repo has almost 48K commits!

			* 4 - 506			
		providing a tool to	* An FDS			
		study fundamental	simulation			
		fire dynamics and	requires a			
		combustion.	lot of			
			computing			
			power, and			
			in the case			
			of very large			
			geometries			
			or very long			
			simulations,			
			using your			
			PC can be			
			very limiting			
			and not			
			always the			
			best			
			solution. A			
			possible			
			solution is to			
			run FDS on a			
			VPS (Virtual			
			Private			
			Server): in			
			other words,			
			you rent a			
			server with a			
			certain			
			computation			
			al power and			
			run the FDS			
			simulations			
			on it.			
			on it.			
FIRE-CA						
		FireCast is a fully	Specified			* FireCast is
		automated software	Features:			powered by W.I.S.E.
		service developed to	* Fuel			and thus is built
		provide real-time	models			upon validated
		analysis of wildfire	cover		* Browser	software that
	Lloomtlond	behaviour.	Canadian		* Mobile	
	Heartland			PDF 2022_F	device	implements the
Etu-O	Software	Simulations	and New	* 2022 Fireline	* REST API's for	Canadian Fire
FireCast	Solutions	presenting fire	Zealand FBP	Magazine	your existing IT	Weather Index
	(acquired by	perimeters and a	fuel types.	<u>article</u>	infrastructure	(FWI) and Fire
	Technosylva)	variety of statistics are	* Secured	<u></u>	to consume	Behaviour
		completed within	access		results	Prediction (FBP)
		minutes. These quick	available via			standards. FireCast
		results help support	web and			provides results via
		timely	mobile			your desktop web
		decision-making in	browsers, as			browser or mobile

well as REST device, as well as response planning. API's. REST API's for your Realtime automated existing IT Visualization wildfire predictive infrastructure to modelling. s in 2D and consume results. Deterministic and 3D views, ensemble outputs * In 2022, they with a from a suite of variety of advertise: weather models. options - They analyzed Implemented for the (streets to 7000 fires in near 2021 Canadian fire satellite real time across season, modelled all western Canada. imagery). western Canadian * Perimeters - Performed 4.7M wildfires in near and fire scenarios. real-time for 2022, statistics - Simulated 675K and over 1000 displayed in fires. simulations the UI, and * Works off the simultaneously. available via Canadian Forest the API's. * Interactive Fire Behaviour playback of Prediction System. simulations visualization of fire growth. * Agency and user-customi zation of the UI for FBAN's, Duty Officers, Meteorologi sts. * Agency and user-customi zation of a variety of simulation options. * Predictions based on GDPS, GEPS, RDPS, REPS, HRDPS, NAM, GPS, HRRR, SREF, **ECMWF**

			weather			
			models.			
			* Results			
			automaticall			
			y generated			
			within			
			minutes of			
			new inputs.			
			* A growing			
			set of			
			advanced			
			outputs such			
			as arrival			
			times and			
			critical fire			
			paths to			
			assets.			
			* Archival of			
			every fire			
			ever			
			modelled,			
			for playback,			
			post-fire			
			analysis, and			
			training.			
		Firemap is an	* Can view			
		operational tool for	live and			
		real-time	historical			
		environmental data	fires on the			
		visualization, fire	UI:			
		behavior modeling	- CONUS:			* Funded by NSF
		and forecasting, and	2006-2024			(\$2.6M).
		"what-if?" analyses	- CA:			* Partnered with:
		for potential fires. It	1878-2024			- Los Angeles Fire
		shows the user active	* UI has			Department
		and historical wildfire	easy-to-use	* Link to UI.		- Orange County
		perimeters, weather	drop-down	* Firemap FAQ	* Browser	Fire Authority
<u>Firemap</u>	WIFIRE	data, and live camera	menus to		based.	- U.S. DHS Science
		feeds.	turn on	* Firemap UI Tutorial	baseu.	and Technology
			VIIRS,	<u>Iutoriai</u>		Directorate
		Firemap enables	MODIS, and			- <u>Sage AI</u>
		simple execution of	GOES data.			(Cyberinfrastructure
		fire models with	Loads)
		options for running	instantly.			* Last update was
		ensembles by taking	- Legend			Dec 21, 2023.
		the information	goes from			
		uncertainty into	red (last 12			
		account. The results	hrs) to gray			
			/a - ' \			
		are easily viewable sharable, repeatable,	(2–7 days). * Cameras:			

and can be animated	- They
as a time series.	
as a time series.	integrate ALERTWildfir
	e Pan-Tilt-Zoo
	m (PTZ) Cameras and
	HPWREN
	Fixed
	Camera into the UI.
	- You can see
	the field of
	view (FOV)
	and the
	target of the
	cameras.
	Click the
	thumbnail to
	see exactly
	what the
	cameras
	Sees.
	- There is a
	fancy feature
	in which you
	can drop a
	pin onto the
	map where
	multiple
	FOVs
	overlap.
	Then live
	feeds of ALL
	those
	cameras
	pops up.
	* Weather
	(wx) data:
	- You can
	toggle on/off
	wx stations
	to see their
	locations as
	well as their
	data: air
	temp,
	humidity,
	fuel
	moisture,

			wind, gust		
			- NOTE: The		
			data shown		
			on the UI is		
			just a single		
			point per wx		
			station. They		
			don't		
			interpolate		
			between wx		
			stations.		
			- View the		
			forecast		
			wind flow		
			streamlines		
			by going to		
			the top right		
			menu button		
			> Weather >		
			Weather		
			Forecast.		
			- Their wx		
			stations are		
			almost		
			entirely		
			located in CA		
			and CO.		
			* Can log in		
			with		
			credentials		
			(optional?).		
		Designed for research			
		application and ran in			
		batch mode			
		from card decks.			
		I think there are two	* Spatial fire		
		different FIREMODs:	behavior		
		(1) An older one that	system.		
	King's College	ran in batch mode	* Looks like	* Fire Science	
FIREMOD	London (KCL)	from card decks.	it's being	Show Podcast.	
		(2) A physics-based	developed		
		wildfire modelling	by a		
		project created by a	university at		
		King's College London	the moment.		
		group.			
		0			
		These may be the			
		same			

FirePlus Ver 5.0						
<u>FireRisk</u>	Technosylva	Part of their Wildfire Analyst cloud-based platform.				
FIRESEV						
<u>FireSight</u>	Technosylva	Part of their Wildfire Analyst cloud-based platform. Interesting. This tech was likely acquired from Heartland Software Solutions.				
<u>FireSim</u>	Technosylva	Part of their Wildfire Analyst cloud-based platform.				
FlamMap6	Joint Fire Science Program RMRS Fire, Fuel, and Smoke Science Program USDI Bureau of Land Management US Forest Service US Forest Service Rocky Mountain Research Station US Forest Service Wildland Fire Management Research, Development & Applicatio	The FlamMap fire mapping and analysis system (Finney 2006) describes potential fire behavior for constant environmental conditions (weather and fuel moisture). Fire behavior is calculated for each pixel within the landscape file independently. Potential fire behavior calculations include: * surface fire spread * flame length * crown fire activity type * crown fire initiation * crown fire spread. "Fuel is the only variable that changes": Dead fuel moisture and conditioning of dead fuels in each pixel based on slope,	* Condition variation is constant in time but variable across the landscape. * User specifies total burning time (minutes). * Spatial fire behavior system that effectively does a BehavePlus run on each pixel. Each calculation is separate and independent for each point (pixel) on the landscape. * FlamMap MTT calculates	* Spotting technical documentatio n * FlamMap help website. * Video: How to use FlamMap6. * FlamMap software page. * Modeling Spot Fires—U.S. Modeling System Comparisons for Practitioners (October 2010 — Opperman)	* Desktop application that ONLY runs in a 64-bit Windows OS. * Personal Computer	* "As originally implemented in BEHAVE, the spotting component of FlamMap and FARSITE is intended to compute the maximum spotting distance from a given point on a fire front if torching occurs. It is not intended to simulate the numbers of embers, exact locations embers would land, or locations of resulting spot fires." * Tonja Opperman claims that FlamMap desktop doesn't include the spotting module (as of 2010). * Because environmental

shading, elevation, aspect, and weather. travel to With the inclusion of FARSITE, FlamMap can now compute wildfire growth and behavior with detailed sequences of weather conditions. minimulative travel to the wind travel to the condition of the sequence of the sequence

minimum travel times (MTT) of fire based on numerous fire spread pathways. - User can use a "drip torch" cursor to draw an ignition line polygon. - User can add a barrier file to impede fire growth. * Can run WindNinja on the fly and overlay wind vectors onto map during an MTT run.

Includes the following software:

- FARSITE (Finney 1998, 2004) - FlamMap **BASIC** (Finney 2006) - Minimum **Travel Time** (MTT, Finney 2002, 2006) - Treatment Optimization Model (TOM, Finney 2001, 2006, 2007) - Conditional Burn

conditions remain constant when using FlamMap, MTT, Burn Probability, and TOM it will not simulate temporal variations in fire behavior caused by weather and diurnal fluctuations as FARSITE does. Nor will it display spatial variations caused by backing or flanking fire behavior. These limitations need to be considered when viewing FlamMap output using these models in a relative sense rather than absolute sense. However, these outputs are well-suited for landscape level comparisons of fuel treatment effectiveness because fuel is the only variable that changes. Outputs and comparisons can be used to identify combinations of hazardous fuel and topography, aiding in prioritizing fuel treatments.

* FlamMap MTT is not a replacement for FARSITE, nor is it a complete fire growth simulation model. Although you can run a simulation for many

Probability (Finney 2005, 2006) Includes the following FB Models: Rothermel's (1972)surface fire spread model, - Van Wagner's (1977)crown fire initiation model, Rothermel's (1991)crown fire spread model, - Albini's (1979)spotting model, - Finney's (1998) or Scott and Reinhardt's (2001)crown fire calculation method, and - Nelson's (2000) dead fuel moisture model. This allows conditioning of dead fuels in each pixel based on slope, shading,

elevation, aspect, and

hours, the wind and weather inputs remain constant for the duration of the simulation. FARSITE, however, can model fire spread and fire behavior using varying wind and weather inputs that allow dead fuel moisture conditions to change over time. MTT uses spatial information of topography and fuels to calculate fire behavior characteristics for the duration of the simulation using one set of wind and fuel moisture conditions.

Assumptions and Limitations:

* Assign a constant Foliar Moisture Content (%) to the entire canopy, even though you might analyze a massive, varying landscape.

weather. Spotting Procedure: 1. FB calculated for each landscape node. 2. If node experiences passive/activ e crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1-10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth. EoveFire		
Procedure: 1. FB acalculated for each landscape node. 2. If node experiences passive/activ e crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		weather.
Procedure: 1. FB acalculated for each landscape node. 2. If node experiences passive/activ e crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		Spotting
1. FB calculated for each landscape node. 2. if node experiences passive/activ e crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting		
calculated for each landscape node. 2. If node experiences passive/active crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
for each landscape node. 2. If node experiences passive/activ e crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
landscape node. 2. If node experiences passive/activ e crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover Elevation, Wind info then determine direction.		
node. 2. If node experiences passive/activ e crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting		
2. If node experiences passive/activ e crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
experiences passive/activ e crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
passive/activ e crownfire, then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		experiences
then 16 incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
incrementall y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		e crownfire,
y-sized embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		then 16
embers are lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		incrementall
lofted and followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
followed to determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
determine max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
max spotting distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
distance and direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
direction. 3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
3. Crown Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
Fraction Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
Burned and Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
Canopy Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
Cover determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
determine the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
the num of torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine distance and azimuth.		
torching trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
trees (1–10), which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
which determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
determine firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
firebrand lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
lofting height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
height. 4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
4. Crown Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
Fraction Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
Burned, Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
Canopy Cover, Elevation, Wind info then determine max spotting distance and azimuth.		
Elevation, Wind info then determine max spotting distance and azimuth.		
Wind info then determine max spotting distance and azimuth.		Cover,
then determine max spotting distance and azimuth.		
determine max spotting distance and azimuth.		Wind info
max spotting distance and azimuth.		
distance and azimuth.		
azimuth.		
<u>ForeFire</u>		azimuth.
	ForeFire	
	<u> </u>	

FSim	Pyrologix	Quantitative wildfire risk analysis requires complete geospatial coverage of fire impact probabilities and sizes. Wildfire simulation is the primary means of estimating these, including the frequency distribution of large fire events. FSim simulates the growth and behavior of hundreds of thousands of fire events for risk analysis across large land areas using geospatial data on historical fire occurrence, weather, terrain, and fuel conditions. Effects of large fire suppression on fire duration and size are also simulated.	* Essentially	* FSim on Pyrologix website. * Guide to best practices.		* Does not show
FSPro		Fire Spread Probability (FSPro) A fire spread and spotting probability system but does not show fire behavior or max spotting distance.	uses hundreds of WFDSS NTFB runs to create a probability analysis for long-term fires. * Performs hundreds or thousands of	* FSPro analysis in Alaska user's guide v1.1. * Modeling Spot Fires—U.S. Modeling System Comparisons for Practitioners (October 2010 — Opperman)	* High-performa nce computers * Requires Internet access. * Must be authorized	where torching/crowning is likely to occur on the landscape. * "Cannot distinguish spotting without inclusions." — Tonja Opperman. I think she's saying that if spotting occurs, then the fire front will merge with these new spot fires to look like one single fire. * "Fire probability surface output that may or may not distinguish spot fire activity." — Tonja

al	* "Calibrate FSPro
probabilities.	with STFB utilizes
* Produces	consistent spotting
the	methods." — Tonja
probability	
of the fire	
reaching	
each point	
from the	
known fire	
perimeter	
during the	
specified	
simulation	
duration	
(typically	
1–3 weeks).	
* Conditions	
vary by day	
and across	
the	
landscape.	
* User	
specifies	
hours/days	
of (true)	
active	
burning and	
then,	
separately,	
number of	
days for	
simulation.	
* Models	
the fuel	
moisture	
and wind	
sequences	
from	
climatology.	
Spotting	
Process:	
* Sets up	
vertices,	
each of	
which lofts	
16	
incrementall	
y sized	
embers	

(source,
slide 26).
Number of
vertices
depends on
perimeter
and distance
resolutions
& timestep.
* Distance
and
perimeter
resolutions
are
determined
from the LCP
resolution;
timestep is
60 minutes.
Embers are
randomly
drawn based
on user-def
spotting
probability.
* Ember
distances
and azimuth
are based on
canopy
cover, crown
fraction
burned,
elevation,
winds, and
species/DBH
. Embers are
tracked until
they burn
out or land.
* Ignores
short-range
spotting.

Good Ol' Nomograms	* NWCG	A nomogram is a graph that helps you quickly read off values. For example, the NWCG has created nomograms to help wildland firefighters quickly read off the maximum spotting distance for embers based on parameters like torching tree height, species, DBH, wind speed, and target tree height.	* Rothermel published the nomograms (1983) which were based on the model published by Albini (1979).	* Modeling Spot Fires—U.S. Modeling System Comparisons for Practitioners (October 2010 — Opperman)	* Likely only paper-based!	* Assumptions and limitations: - Gives max distance only Assumes level terrain and does not factor in terrain features Considers only a single torching tree Looks at wind speed at only 20 ft above ground level Does not account for: likelihood of trees torching, firebrand material availability, number of spot fires, probability of ignition for that firebrand. * The species quick reference lookup tables assume that only 3 trees are torching, that they are 50 ft tall, have DBH = 10 in, and the downwind canopy cover has an open stand of 50 ft trees. These assumptions are generally crude and only give an estimate on the max spotting distance possible.
GridFire	Pyregence	raster-based fire behavior model that may be used to simulate the spread of wildland fires across a landscape, either individually or in monte carlo simulations over space and time. For				

HIGRAD-FIRET EC		inputs, it requires a stack of co-registered raster maps for your area of interest as well as a text configuration file that specifies various parameters necessary for the simulation.				
IFTDSS	Interagency Fuel Treatment Decision Support System (Pronounced: "IF-tee-diss")	Interagency Fuel Treatment Decision Support System (IFTDSS): A web-based application designed to make fuel treatment planning and analysis more efficient and effective.	* Windows only. * You can edit your fuels but then do a different run. * Their basemap is LANDFIRE data.			
NTFB	WFDSS (Pronounced: "WOOF-diss") * USFSP	WFDSS Near-Term Fire Behavior is a geospatial, two-dimensional fire growth model that is similar to FARSITE. NTFB incorporates existing models for surface fire, crown fire, spotting, post-frontal combustion, and fire acceleration.	* Environment al conditions do not need to be constant; the model reacts to changes in weather and wind inputs throughout the simulation. * Most applicable for modeling mid-term periods: 1–3 days (sometimes 7 days, but 15 days max) under a variable weather	* Instructions on how to use NTFB.	* Web-based app	* Assumptions and limitations. * "Requires quite a bit of setup, data acquisition, and calibration." — Tonja Opperman * "Without a lot of experience, users have little control over the number of opportunities for embers to be lofted. Spotting in FARSITE is more complex than what is occurring in a square grid with Minimum Travel Time methods. The moral of the story is that a much lower spotting probability is needed in NTFB/FARSITE than MTT-based models.

forecast.	The level of spotting
* Creates	is based on these
deterministi	inputs, and the
c simulated	more finely they are
results,	set, the more
which you	spotting will occur.
can relate	Vertices have 16
directly back	chances to beat the
to your	<u>user-set</u>
inputs. You	<u>"extinguishment</u>
will get the	rate," but in MTT,
same	there is only one
outputs	ember. FARSITE has
every time	a 1/16th chance of
(except for	choosing the
spotting).	farthest ember, but
Useful as a	MTT has a very.
calibration	very small chance
tool for	of choosing the
other	<u>farthest ember." —</u>
models.	Tonja Opperman
*	* Grand fir is used
"Accurately	as the spotting tree
represents	species for the
fire growth	entire landscape.
and	Distance resolution.
behavior,	<u>perimeter</u>
but fires	resolution, and
must be	<u>timestep are</u>
"grown" to	<u>automated.</u>
the area of	* The minimum
concern at	spotting distance
the right	(set to the
time."	<u>landscape</u>
* Uses both	<u>resolution</u>)
crown fire	essentially skips the
methods (1.	<u>first cell. For</u>
Finney, 2.	example, on a
Scott &	<u>60-meter</u>
Reinhardt).	<u>landscape</u> , no spots
Spotting	occur in the first 60
Process:	meters from the
* Sets up	perimeter, but any
vertices,	viable embers that
each of	land beyond 60
which lofts	meters can produce
16	spot fires.
incrementall	* NOTE: Users will
y sized	probably want to
embers	set spotting

1.	
(source,	probability lower in
<u>slide 26</u>).	NTFB than in
Number of	systems using MTT
vertices	(STFB, FSPro).
depends on	* "NTFB is slowly
perimeter	becoming its own
and distance	unique thing. It has
resolutions	<u>evolved</u>
& timestep.	considerably from
* Distance	FARSITE." —
and	<u>Opperman</u>
perimeter	
resolutions	
are	
determined	
from the LCP	
resolution;	
timestep is	
60 minutes.	
Embers are	
randomly	
drawn based	
on user-def	
spotting	
probability.	
* Ember	
distances	
and azimuth	
are based on	
canopy	
cover, crown	
fraction	
burned,	
elevation,	
winds, and	
species/DBH	
. Embers are	
tracked until	
they burn	
out or land.	
* Ignores	
short-range	
spotting.	
* Simulates	
lofting and	
downwind	
travel of	
individual	
embers of	
different	

the Canadian	describe likelihood ember will fire in e fuels"
Wildland Fire Growth Simulation Model: A deterministic fire growth simulation model that was developed to help fire managers to understand the probable consequences of their decisions. It uses spatial input data on topography (slope, aspect, and elevation), fuel types, and weather to simulate fire growth by applying Huygens' principle of wave propagation to the rate-of-spread predictions from the Canadian Forest Fire Behavior Prediction System of the Canadian Forest Fire Danger Rating System.	
PROPAGATOR	

		An open-source platform for viewing active fires and forecasting likely spread.	* 2D and 3D UI. * Integrates with ALERTCalifor nia's cameras on PyreCast's UI. * Many,		
PyreCast	Pyregence	PyreCast is integrated into the Department of Energy's (DOE) situation awareness North American Energy Resilience Model (NAERM) program as part of a partnership with the Lawrence Livermore National Laboratory (LLNL). Developed as part of the California Energy Commission EPIC program funded Pyregence Project (#EPC-18-026)	MANY different layers (fuel, weather, risk, active fires). Examples: - Transmission lines Structures Fuel models HRRR, GFS - Active Fires Firebrand lgnition Probability (%) but only for 3-km	* Link to UI. * Fire Forecasting User's Guide. * PyreCast Webinar	
QUIC-Fire		QUIC-Fire is a new physics-based cellular automata fire spread simulation tool that that offers advanced fire modeling capabilities without the demand for extraordinary computational resources. It rapidly solves these feedbacks by coupling the mature 3-D rapid wind solver QUIC-URB to a physics-based cellular automata fire	pixels.	* How to create a QUIC-Fire Export.	

spread model Fire-CA. QUIC-Fire uses 3-D fuels inputs similar to the CFD model FIRETEC, allowing this tool to simulate effects of fuel structure on local winds and fire behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
fuels inputs similar to the CFD model FIRETEC, allowing this tool to simulate effects of fuel structure on local winds and fire behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
the CFD model FIRETEC, allowing this tool to simulate effects of fuel structure on local winds and fire behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
the CFD model FIRETEC, allowing this tool to simulate effects of fuel structure on local winds and fire behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
FIRETEC, allowing this tool to simulate effects of fuel structure on local winds and fire behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
tool to simulate effects of fuel structure on local winds and fire behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
effects of fuel structure on local winds and fire behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
structure on local winds and fire behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
winds and fire behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
behavior. Results comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
comparing fire behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
behavior metrics to the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
the computational fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
fluid dynamic model FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
FIRETEC show strong agreement. QUIC-Fire is the first tool intended to provide an opportunity for
agreement. QUIC-Fire is the first tool intended to provide an opportunity for
is the first tool intended to provide an opportunity for
intended to provide an opportunity for
an opportunity for
prescribed fire
planners to compare,
evaluate, and design
burn plans, including
complex ignition
patterns and coupled
fire-atmospheric
feedbacks.
Kevin Hiers is involved
RANDIG
<u>Simtable</u>
Smokeview is a
companion program
that reads EDS output * Download
Smokeview files and produces * GitHub.
animations on the
computer screen.
* The <u>* Articles</u>
Commonwealth <u>about Spark.</u>
Scientific and Spark Operational has ** Article:
Industrial been developed to be <u>Bushfire</u>
Research utilised by <u>prediction tool</u>
Spark Organisation Australasian fire and can simulate
Operational (CSIRO). emergency service dangerous
* National agencies.
Council for Fire showers and
and Emergency Proprietary software. <u>fire-generated</u>
Services (AFAC). thunderstorm
* The Minderoo
Incommunity

		I		
Foundation.			* Natural Hazards	
			Research	
			Australia: Fire	
			ember	
			transport	
			* Ember	
			transport for	
			<u>bushfire</u>	
			simulation -	
			final report	
		Features:		
		1. Two-way		
		Fire-Atmosp		
		here		
		Coupling:		
		Integration		
		of the		
		Community		
		Fire		
		Behavior		
		Model		
		(CFBM)		
		allows		
		high-resoluti		
		on wildfire		
		simulations		
The Earth		within the		
Prediction	Short-Range Weather	atmospheric		
Innovation Center	(SRW) v3.0.0 is	model.	* All the code.	
(EPIC) and the	expected to be	2. Smoke &	* SRW App	
Unified Forecast	released in Spring	Dust	v3.0.0 Release	
	2025 to model smoke,		Capabilities	
System (UFS)	dust, and fire.	Forecasting:		
community		New		
		capabilities		
		to simulate smoke and		
		dust		
		transport,		
		including		
		test cases, a		
		dedicated		
		Conda		
		environment		
		, and		
		platform-wid		
		e support.		
		3. Expanded		
		Grids &		
		Verification:		

Includes
high-res
Colorado
grids and
improved
verification
tools.
4. Workflow
& CI/CD
Improvemen
ts:
Streamlined
workflows,
upgraded
scripting,
better
container
support, and
continuous
integration
enhancemen
ts.
5.
Documentati
on &
Tutorials:
Updated
guides and
new
tutorials to
help users
adopt the
new
features.
reactives.
* Will allow
for improved
air quality
and
particulate
dispersion
predictions
with new
tests and
optimized
configuratio
ns.
* Simulates
fires on a
very-high-res

olution fire
modeling
grid nested
within the
atmospheric
domain,
enhancing
model
accuracy in
simulating
wildfire
spread,
smoke
emissions,
and their
subsequent
meteorologi
cal impacts.
* A new
Conda
environment
ensures
smooth
execution
across
platforms,
resolving
conflicts and
improving
workflow
efficiency for
smoke, dust,
and fire
simulations.
* Includes
enhanced
verification,
automation,
and data
managemen
t.
* It offers a
bunch of
open source
weather and
fire
modeling
tools we
could
incorporate

			into WindTL.			
STFB	WFDSS (Pronounced: "WOOF-diss") * USFS	Short-Term Fire Behavior: Shows where torching of trees and spotting will occur on the landscape. "Quickly and spatially calculates fire behavior that produces embers, and can show spot fires, but may not give Max [spotting] Distance." — Tonja Opperman Often compared to FlamMap MTT.	into WindTL. * Best used for 1 or 2 burn periods to model a "snapshot in time" for a particular weather event. — not sure if this info is relevant for STFB or something else. * Useful for quickly showing where passive and active crown fires occur and where embers can be produced across the entire landscape. * Used to determine wind speed and dir thresholds required for spotting across a barrier. * Calculates fire behavior for each cell simultaneou sly for a single scenario. Nodes are on fixed grid equal to LCP spatial resolution.	* Comparing spotting models on the Chakina Fire. * Modeling Spot Fires—U.S. Modeling System Comparisons for Practitioners (October 2010 — Opperman).	* Web-based app?	* Probabilistic nature of spotting means that every run will be different and that max spotting distances are unreliable. Assumptions and Limitations: * Spotting only occurs when passive or active crown fire is modeled. Finney and Scott & Reinhardt methods are available for crown fire; each calculates crown fraction burned (CFB) differently. CFB and canopy cover are used to determine "number of torching trees" (1-10) used in firebrand lofting height. * More embers will be lofted at finer landscape resolutions. Faster ROS will encounter more nodes, but the absolute number of nodes is static. One ember per node; less chance than in NTFB/FARSITE that an ember will travel the maximum distance. * NOTE: Users will probably want to set spotting probability higher in STFB than for NTFB tools.

* Uses MTT
to calculate
fastest fire
travel paths.
Embers
produced
only with
passive and
active crown
fire.
Spotting
Process:
* For every
cell on the
landscape
where tree
torching is
predicted to
occur, 16
"test"
embers are
lofted. Only
the MAX
spotting
distance and
angle of
travel is
recorded.
*
User-defined
Spotting
Probability
(is this
problematic
?) randomly
determines
which
torching
cells
produce a
single
ember.
Those nodes
generate a
single ember
with random
distance
from zero to
the max for
that node.

For cells
predicted to
have active
or passive
crown fires,
16
incrementall
y-sized
embers are
lofted.
- Randomly
lofts a single
ember from a node if the
predicted fire type is
fire type is passive or
active crown
fire.
- Embers are
produced
from a fixed
grid —
limited
opportunitie
s to loft an
ember.
* Max
ember
distance &
azimuth are
calculated
using canopy
cover, crown
fraction
burned,
elevation,
and all
available
wind
information.
* Embers
that land on
burnable
fuels always
ignite
(Finney
2002),
similar to
spotting in

FlamMap 5.0 and FSPro. Wildfire Analyst Pocket Edition: An application that provides the wildland	I I
Wildfire Analyst Pocket Edition: An application that provides the wildland	
Pocket Edition: An application that provides the wildland	
fire community with operational fire behavior tools for use in the field. WFA Pocket uses concepts and formulas developed by the US Forest Service Missoula Fire Sciences Lab to perform fire behavior calculations. It is a culmination of the wonderful science made possible by the work of applied wildfire scientists and wildland firefighters across the world. WFA Pocket compiles knowledge gained from the five plus decades of applied research on wildfire behavior, and is intended to serve as a companion to the Fire Behavior Field Reference Guide (PMS 437). It's free on the App Store.	WFA Pocket Techn
WFDS	WFDS

WildEST Pyrologix	as integrated measures of risk to buildings, wildfire hazard, and	* They create a Structure Exposure Score: a relative measure of the exposure of a structure — assuming one were present — to wildfire hazard.	* Download page. * Link to Documentatio n. * History of Documentatio n on OSF (shows updates).		
-------------------	--	---	--	--	--

WindTL is a specialized fire modeling tool designed to simulate and predict wildland fire behavior under varying wind conditions, providing real-time insights that help firefighting teams, utility companies, and emergency planners make informed decisions about risk mitigation and resource allocation. By integrating high-resolution meteorological data with terrain and fuel information, it estimates how fires propagate, identifies potential hotspots, WindTL and forecasts fire spread and intensity. Combining advanced physical modeling with user-friendly visualization, WindTL accounts for the complex interactions between wind patterns, topography, and fuel characteristics, allowing users to input real-time conditions and generate scenario-specific predictions displayed through maps, heat intensity overlays, and temporal projections. This makes WindTL an essential decision-support system for wildfire

	management,	
	enhancing situational	
	awareness, guiding	
	resource deployment,	
	and improving safety	
	for communities and	
	infrastructure during	
	wildfire events.	
	Wildfire Intelligence	
	Simulation Engine	
	(WISE):	
WISE		
	Owned by the	
	Goverment of the	
	Northwest Territories	
	(Canada).	
	Dr. Thomas Jones is	
	"one of the	
	developers of the	
	Warn-on-Forecast	
	System (WoFS), which	
	is a regional data	
	assimilation and	
	forecast system	
	designed to make	
	short-term	
	probabilistic forecasts	
	(0-6 hour) of high	
	impact weather	
	events. Originally, the	
	system focused in	
	severe weather, but	
WoFS	has been extended for	
	fire weather	
	applications. During	
	the past couple of	
	years, I have been	
	very active in adding	
	fire weather related	
	tools and outputs to	
	the system. The	
	forecast model itself is	
	based off of the	
	HRRR-v4, but we	
	generate output at 5	
	minute intervals for	
	18 ensemble	
	members, which is	
	something I think	
	Jonne Chang Ferning	

		would be very useful		
		for your inputs."		
WRF				
		WRF-Fire is a physics		
		module within WRF		
		ARW that allows users		
		to model the growth		
		of a wildland fire in		
		response to		
		environmental		
		conditions of terrain		
		slope, fuel		
		characteristics, and		
		atmospheric		
		conditions, and the		
		dynamic feedbacks	*	
	Weather	with the atmosphere.	* Wiki on	
WRF-Fire	Research and	It is implemented as a	Open WFM.	
	Forecasting	physics package with	* Wiki page.	
		two-way coupling between the fire	* GitHub.	
		behavior and the		
		atmospheric		
		environment allowing the latent and		
		sensible heat released		
		by the fire to alter the		
		atmosphere		
		surrounding it, i.e.		
		'create its own		
		weather'. It was first		
		released in Version		
		3.2 (April 2010).		
		A novel coupled		
		model that combines		
		the physics-based		
		wildland fire model		
		HIGRAD/FIRETEC, with		
		the mesoscale Weather Research		
		and Forecasting (WRF)		
WRF-Firetec		model. WRF-Firetec		
		leverages the detailed		
		fire behavior		
		simulation capabilities		
		of HIGRAD/FIRETEC		
		and the sophisticated		
		weather forecasting		
		abilities of WRF. This		
		33		

		integration enables a comprehensive analysis of fire-weather interactions, offering valuable insights into how meteorological conditions influence fire behavior and vice versa. These folks were going to present at the FireWx1 AMS 2025 Conference but their oral presentation was withdrawn.			
WRF-SFIRE	Weather Research and Forecasting * Dept of Atmospheric Sciences, The University of Utah * The Abdus Salam International Centre for Theoretical Physics		* Uses Anderson's 13 fuel models (1982).	* WRF-SFIRE User Guide on Open WFM. * GitHub. * WRF-SFIRE Presentation. * AMS FireWx1 2025 presentation: Surface and Canopy Heat Fluxes Parameterization Improvements in WRF-SFIRE	
XyloPlan		XyloPlan creates a data-driven, shared view of wildfire risk, with actionable solutions that enable Fire Adapted Communities			

Market Landscape Understanding: Ecosystem Types

Group	Examples	Function
Academic	University of Montana Fire	Research into fire behavior, fuels, ecology, modeling, and

Institutions	Center, Colorado State University, UC Berkeley	social impacts. Develop algorithms, models, and decision-support tools.
Government Research Labs	U.S. Forest Service RMRS, LANL, NIST, NASA	Develop predictive fire models, remote sensing, climate-fire research. Provide authoritative science and technology.
Satellite Operators / Remote Sensing Orgs	NOAA (GOES), ESA (Copernicus), Planet Labs, Maxar	Provide earth observation data for fire detection, fuels mapping, and monitoring.
Wildland Firefighters	U.S. Forest Service hotshot crews, CAL FIRE firefighters	Frontline response: fire suppression, mitigation, controlled burns, incident management. Provide field data back to researchers and agencies.
Insurance Companies	State Farm, Allstate, Munich Re	Risk assessment, loss modeling, incentivize mitigation for property owners, demand better predictive tools.
Utilities	PG&E, SDG&E, Xcel Energy	Fire prevention (vegetation management, grid hardening), situational awareness, risk monitoring. Often early adopters of private wildfire risk tools.
Civilians / Communities	Homeowners, local residents, community fire safe councils	Implement defensible space, participate in community resilience, provide local observations.
Private Tech Companies	Technosylva, OroraTech, BurnBot, SkyTL	Commercialize wildfire modeling, detection, and monitoring systems. Deploy AI/ML, SaaS platforms, and satellite/drone tech.
Cloud / Big Tech	AWS, Google Cloud, Microsoft Azure	Provide scalable compute and storage for fire models, geospatial services, satellite imagery, and real-time data pipelines.
NGOs / Nonprofits	Fire Adapted Communities Network, The Nature Conservancy	Promote policy, community engagement, fuels reduction, prescribed fire, and bridge between science and practice.
Emergency Management Agencies	FEMA, state and county emergency operations centers	Coordinate disaster response, evacuation planning, and communication.
Policy & Regulatory Bodies	State legislatures, Congress, DOI, USFS, CAL FIRE leadership	Create wildfire policy, allocate funding, set safety standards.
Heavy Equipment / Aviation Contractors	Erickson (helitankers), Coulson Aviation, bulldozer contractors	Supply specialized suppression assets and operational support.